当前位置: 首页 > news >正文

怎么做网站页面代码搜索墨猴seo排名公司

怎么做网站页面代码搜索,墨猴seo排名公司,用爬虫做数据整合网站,刚做还网站第一时间抓取文章目录 类别区分变量与概念逻辑回归Sigmoid函数公式决策边逻辑损失函数和代价函数逻辑回归的梯度下降泛化过拟合的解决方案正则化 类别区分 变量与概念 决策边置信度阈值threshold过拟合欠拟合正则化高偏差lambda(λ) 线性回归受个别极端值影响&…

文章目录

    • 类别区分
      • 变量与概念
      • 逻辑回归
      • Sigmoid函数
      • 公式
      • 决策边
      • 逻辑损失函数和代价函数
      • 逻辑回归的梯度下降
      • 泛化
      • 过拟合的解决方案
      • 正则化

类别区分

变量与概念

决策边置信度阈值threshold过拟合欠拟合
正则化高偏差lambda(λ)

线性回归受个别极端值影响,不适合用于分类

逻辑回归

  1. 输出值介于(0,1)

  2. 解决输出标签,判断真值

  3. 用于回归和分类

Sigmoid函数

在这里插入图片描述

图注:z越大,函数g(z)值越趋近于1;z为负数,越小则函数g(z)值越趋近于零。

image-20230424185614938

公式

f w ⃗ , b = g ( w ⃗ ∗ x ⃗ + b ) = 1 1 + e − ( w ⃗ ∗ x ⃗ + b ) f_{\vec{w},b}=g(\vec{w}*\vec{x}+b)=\dfrac{1}{1+e^{-(\vec{w}*\vec{x}+b)}} fw ,b=g(w x +b)=1+e(w x +b)1

P ( y = 0 ) + P ( y = 1 ) = 1 P(y=0)+P(y=1)=1 P(y=0)+P(y=1)=1

一般写法: f w ⃗ , b ( x ⃗ ) = P ( y = 1 ∣ x ⃗ ; w ⃗ , b ⃗ ) f_{\vec{w},b}(\vec x)=P(y=1|\vec x;\vec w,\vec b) fw ,b(x )=P(y=1∣x ;w ,b )

含义:w,b为影响因子的时候,选中x行向量时,y=1的概率是多少。

决策边

在这里插入图片描述

逻辑损失函数和代价函数

L ( f w ⃗ , b ( x ⃗ ( i ) ) , y ( i ) ) = − y ( i ) l o g ( f w ⃗ , b ( x ( i ) ) ) − ( 1 − y ( i ) ) l o g ( 1 − f w ⃗ , b ( x ⃗ ( i ) ) ) L(f_{\vec w,b}(\vec x^{(i)}),y^{(i)})=-y^{(i)}log(f_{\vec w,b}(x^{(i)}))-(1-y^{(i)})log(1-f_{\vec w,b}(\vec x^{(i)})) L(fw ,b(x (i)),y(i))=y(i)log(fw ,b(x(i)))(1y(i))log(1fw ,b(x (i)))

分取值写,则如下图:

在这里插入图片描述

负的log函数取零到一的部分。如上图。

在这里插入图片描述

平方误差代价函数不适用原因:会出现多个局部最小值。

简化的代价函数为 J ( w ⃗ , b ) = − 1 m ∑ i = 1 m [ L ( f w ⃗ , b ( x ⃗ ( i ) ) , y ( i ) ] J(\vec w, b)=-\dfrac{1}{m}\sum\limits_{i=1}^m[L(f_{\vec w,b}(\vec x^{(i)}),y^{(i)}] J(w ,b)=m1i=1m[L(fw ,b(x (i)),y(i)]
它由极大似然估计法推出。
凸函数原因:凸优化学习

逻辑回归的梯度下降

重复地更新w和b,令其值为旧值-(学习率 α ∗ α * α 偏导数项)

泛化

若一个模型能从从未见过的数据中做出准确的预测,我们说它能够从训练集泛化到测试集。我们的目标是构建一个泛化精度尽可能高的模型

一个模型不能太过特殊以至于只能用于一些数据,也不能过于宽泛难以拟合数据。

image-20230425224821326 image-20230425225005457

过拟合的解决方案

  1. 收集更多数据,但数据收集能力可能有上限。
  2. 观察是否可以用更少特征,应选用最相关特征,但有些被忽略的特征可能实际上有用。有些算法可以自动选择合适的特征。
  3. 正则化,w1到wn可以缩小以适应训练集,不推荐缩小b

正则化

一种惩罚,如果某一个w的增大使代价函数J增大,那它实际应该减小。

J ( w ⃗ , b ) = 1 2 m [ ∑ i = 1 m ( f w ⃗ , b ( x ⃗ ( i ) ) − y ( i ) ) 2 + λ 2 m ∑ j = 1 n w j 2 + λ 2 m b 2 ] ( λ > 0 ) J(\vec w, b)=\dfrac{1}{2m}[\sum\limits_{i=1}^m(f_{\vec w, b}(\vec x^{(i)})-y^{(i)})^2+\dfrac{λ}{2m}\sum\limits_{j=1}^nw_j^2+\dfrac{λ}{2m}b^2](λ>0) J(w ,b)=2m1[i=1m(fw ,b(x (i))y(i))2+2mλj=1nwj2+2mλb2](λ>0)

选择合适的λ以避免过拟合和欠拟合。

在这里插入图片描述

http://www.wooajung.com/news/22390.html

相关文章:

  • 网站路径优化怎么做龙岗百度快速排名
  • 怀化灵知网站建设石家庄百度推广优化排名
  • 山东省建设厅执业注册中心网站网站seo哪家做的好
  • 网站换程序301嘉兴seo网络推广
  • 微信怎么做淘客网站长尾关键词是什么
  • php网站建设设计报告seo翻译
  • 论坛网站免费建设模板推广工作的流程及内容
  • wordpress公众号插件搜索引擎优化
  • 微信网页制作网站建设开网店如何运营和推广
  • 晋城网站建设新品牌推广策略
  • 网站建设计划书模板余姚网站如何进行优化
  • 360哈尔滨项目搜索引擎优化的概念
  • 河北高端网站建设网络策划
  • 专业集团门户网站建设费用seo自然优化排名
  • 揭阳网站制作托管三只松鼠网络营销策略
  • 科室网站建设网优工程师前景和待遇
  • centos7.2做网站网络工程师是干什么的
  • 网站制作的语言seo综合查询怎么用
  • 网站开发与设计公司去了外包简历就毁了吗
  • 有什么网站可以发布个人信息品牌网站建设制作
  • 凡科网站可以做淘宝客吗微商店铺怎么开通
  • 做门的网站建设合肥百度网站排名优化
  • 横琴网站建设优化关键词排名的工具
  • 弄一个电影网站怎么做独立站建站平台
  • 搏彩网站开发建设可以免费推广的平台
  • 网站开发关键词异地排名查询
  • phpcms v9网站上传广州seo快速排名
  • 单位网站和新媒体建设制度培训心得体会范文大全1000
  • 美国做电商网站百合seo培训
  • 默认线路正在切换线路站长seo查询