当前位置: 首页 > news >正文

北京网站设计技术重庆网站seo服务

北京网站设计技术,重庆网站seo服务,网络系统进行渗透测试通常是按什么顺序来进行的,做商城网站服务器1 pdist 计算n维空间中观测点之间的成对距离。 scipy.spatial.distance.pdist(X, metriceuclidean, *, outNone, **kwargs) 1.1 主要参数 X一个m行n列的数组,表示n维空间中的m个原始观测点metric使用的距离度量out输出数组。如果非空,压缩的距离矩阵…

1 pdist

计算n维空间中观测点之间的成对距离。

scipy.spatial.distance.pdist(X, metric='euclidean', *, out=None, **kwargs)

1.1 主要参数

X一个m行n列的数组,表示n维空间中的m个原始观测点
metric使用的距离度量
out输出数组。如果非空,压缩的距离矩阵Y将存储在此数组中

1.2 举例

import numpy as np
from scipy.spatial.distance import pdistx = np.array([[2, 0, 2], [2, 2, 3], [-2, 4, 5], [0, 1, 9], [2, 2, 4]])
#5个元素,每个元素3维pdist(x)
#array([2.23606798, 6.40312424, 7.34846923, 2.82842712, 4.89897949,6.40312424, 1.        , 5.38516481, 4.58257569, 5.47722558])
'''
10个元素,分别表示:第1个点和第2个点之间的距离
第1个点和第3个点之间的距离
第1个点和第4个点之间的距离
第1个点和第5个点之间的距离
第2个点和第3个点之间的距离
第2个点和第4个点之间的距离
第2个点和第5个点之间的距离
第3个点和第4个点之间的距离
第3个点和第5个点之间的距离
第4个点和第5个点之间的距离
'''

2 cdist

计算两个输入集合中每对元素之间的距离

scipy.spatial.distance.cdist(XA, XB, metric='euclidean', *, out=None, **kwargs)

2.1 主要参数

XAmA*n的矩阵,表示mA个元素,每个元素n维特征
XBmBn的矩阵,表示mB个元素,每个元素n维特征
metric使用的距离度量
out输出数组(mA*mB)。如果非空,压缩的距离矩阵Y将存储在此数组中

2.2 举例

import numpy as np
from scipy.spatial.distance import cdistx = np.array([[2, 0, 2], [2, 2, 3], [-2, 4, 5], [0, 1, 9], [2, 2, 4]])cdist(x,x)
'''
array([[0.        , 2.23606798, 6.40312424, 7.34846923, 2.82842712],[2.23606798, 0.        , 4.89897949, 6.40312424, 1.        ],[6.40312424, 4.89897949, 0.        , 5.38516481, 4.58257569],[7.34846923, 6.40312424, 5.38516481, 0.        , 5.47722558],[2.82842712, 1.        , 4.58257569, 5.47722558, 0.        ]])
'''y=[[1,2,3]]
cdist(x,y)
'''
array([[2.44948974],[1.        ],[4.12310563],[6.164414  ],[1.41421356]])
'''cdist(y,x)
'''
array([[2.44948974, 1.        , 4.12310563, 6.164414  , 1.41421356]])
'''

3 squareform

将距离向量的向量形式转换为方阵形式的距离矩阵,反之亦然。

scipy.spatial.distance.squareform(X, force='no', checks=True)

3.1 举例

import numpy as np
from scipy.spatial.distance import *x = np.array([[2, 0, 2], [2, 2, 3], [-2, 4, 5], [0, 1, 9], [2, 2, 4]])dist_vec=pdist(x)
dist_vec
'''
array([2.23606798, 6.40312424, 7.34846923, 2.82842712, 4.89897949,6.40312424, 1.        , 5.38516481, 4.58257569, 5.47722558])
'''dist_mat=squareform(dist_vec)
dist_mat
'''
array([[0.        , 2.23606798, 6.40312424, 7.34846923, 2.82842712],[2.23606798, 0.        , 4.89897949, 6.40312424, 1.        ],[6.40312424, 4.89897949, 0.        , 5.38516481, 4.58257569],[7.34846923, 6.40312424, 5.38516481, 0.        , 5.47722558],[2.82842712, 1.        , 4.58257569, 5.47722558, 0.        ]])
'''squareform(dist_mat)
'''
array([2.23606798, 6.40312424, 7.34846923, 2.82842712, 4.89897949,6.40312424, 1.        , 5.38516481, 4.58257569, 5.47722558])
'''

4 directed_hausdorff

  • 计算两个二维数组之间的定向豪斯多夫距离
  • 通常用于衡量两个点集合的相似性
scipy.spatial.distance.directed_hausdorff(u, v, seed=0)

数学笔记/scipy 笔记:豪斯多夫距离(Hausdorff )_python 豪斯多夫距离-CSDN博客

4.1 主要参数

u

(M,N)大小的数组

M 表示点的数量,N 表示每个点的维度

v

(O,N)大小的数组

O 表示点的数量,N 表示每个点的维度

4.2 返回内容

duv 之间的定向豪斯多夫距离
index_1 在数组u中贡献豪斯多夫对的点的索引
index_2在数组v中贡献豪斯多夫对的点的索引

4.3 举例

import numpy as np
from scipy.spatial.distance import *u = np.array([(1.0, 0.0),(0.0, 1.0),(-1.0, 0.0),(0.0, -1.0)])
v = np.array([(2.0, 0.0),(0.0, 2.0),(-2.0, 0.0),(0.0, -4.0)])directed_hausdorff(u,v)
#(2.23606797749979, 3, 0)

5 is_valid_dm

判断输入数组是否为有效的距离矩阵

scipy.spatial.distance.is_valid_dm(D, tol=0.0, throw=False, name='D', warning=False)

5.1 主要参数

D用于测试有效性的候选对象
tol距离矩阵应该是对称的。tol是条目ij和ji之间的最大差异,以便将距离度量视为对称

5.2 举例

import numpy as np
from scipy.spatial.distance import *d = np.array([[0.0, 1.1, 1.2, 1.3],[1.1, 0.0, 1.0, 1.4],[1.2, 1.0, 0.0, 1.5],[1.3, 1.4, 1.5, 0.0]])
is_valid_dm(d)
#Trueis_valid_dm([[0, 2, 2], [2, 0, 2]])
#形状不对is_valid_dm([[0, 1, 1], [1, 2, 3], [1, 3, 0]])
#对角线不为0is_valid_dm([[0, 1, 3], [2, 0, 1], [3, 1, 0]])
#不对称

6 is_valid_y

scipy.spatial.distance.is_valid_y(y, warning=False, throw=False, name=None)

判断输入数组是否为有效的压缩距离矩阵。

压缩距离矩阵必须是1维的numpy数组。它们的长度必须是一些正整数n的二项系数C_n^2

6.1 主要参数

y压缩距离矩阵

6.2 举例

import numpy as np
from scipy.spatial.distance import *is_valid_y([1.0, 1.2, 1.0, 0.5, 1.3, 0.9])
#True
#长度为6,合理长度,所以返回Trueis_valid_y([1.0, 1.2, 1.0, 0.5, 1.3, 0.9,1.5])
#False
#长度为7,不合理长度,所以返回False

7 两个数字向量之间的距离

7.1 braycurtis

计算两个一维数组之间的布雷-柯蒂斯距离

scipy.spatial.distance.braycurtis(u, v, w=None)

7.1.1 主要参数

u

(N,)    输入数组

v(N,)    输入数组
w(N,)    u和v中每个值的权重

7.1.2 举例

基本上后面都是一样的,就不举例了

import numpy as np
from scipy.spatial.distance import *braycurtis([1,1,0],[0,1,0])#0.3333333333333333

7.2 canberra

scipy.spatial.distance.canberra(u, v, w=None)

7.3 chebyshev

scipy.spatial.distance.chebyshev(u, v, w=None)

7.4 cityblock

曼哈顿距离

scipy.spatial.distance.cityblock(u, v, w=None)

7.5 correlation

scipy.spatial.distance.correlation(u, v, w=None, centered=True)

7.6 cosine

scipy.spatial.distance.cosine(u, v, w=None)

7.7 euclidean

scipy.spatial.distance.euclidean(u, v, w=None)

7.8 jensenshannon

scipy.spatial.distance.jensenshannon(p, q, base=None, *, axis=0, keepdims=False)

两个概率向量p,q之间的JS距离

如果p和q的总和不为1.0,该程序将对其进行归一化

7.8.1 主要参数

p左侧概率向量
q右侧概率向量
base用于计算输出的对数底数
axis

沿着哪个轴计算JS距离

7.8.2 举例

import numpy as np
from scipy.spatial.distance import *jensenshannon([1.0, 0.0, 0.0], [0.0, 1.0, 0.0])
#0.8325546111576977jensenshannon([1.0, 0.0, 0.0], [0.0, 1.0, 0.0],2)
#1.0a = np.array([[1, 2, 3, 4],[5, 6, 7, 8],[9, 10, 11, 12]])
b = np.array([[13, 14, 15, 16],[17, 18, 19, 20],[21, 22, 23, 24]])
jensenshannon(a, b, axis=0)
#array([0.19542878, 0.14476971, 0.11383771, 0.09276358])jensenshannon(a, b, axis=1)
#array([0.14023394, 0.03991063, 0.02018153])

7.9 mahalanobis

马氏距离

scipy.spatial.distance.mahalanobis(u, v, VI)

7.9.1 主要参数

u输入向量
v输入向量
VI协方差矩阵的逆,也即上面公式中的V^{-1}

7.9.2 举例

import numpy as np
from scipy.spatial.distance import *iv = [[1, 0.5, 0.5], [0.5, 1, 0.5], [0.5, 0.5, 1]]mahalanobis([1, 0, 0], [0, 1, 0], iv)
#1.0

7.10 minkowski

闵可夫斯基距离

scipy.spatial.distance.minkowski(u, v, p=2, w=None)

7.11 seuclidean 

标准欧氏距离

scipy.spatial.distance.seuclidean(u, v, V)

V[i]是针对点集中所有第i个分量计算得到的方差

7.12 sqeuclidean

平方欧氏距离

scipy.spatial.distance.sqeuclidean(u, v, w=None)

8 两个布尔向量距离

8.1 dice

scipy.spatial.distance.dice(u, v, w=None)

CTF表示u是T,v是F,其他类似

8.2 hamming

scipy.spatial.distance.hamming(u, v, w=None)

8.3 jaccard

scipy.spatial.distance.jaccard(u, v, w=None)

8.4 kulczynski1

scipy.spatial.distance.kulczynski1(u, v, *, w=None)

8.5 rogerstanimoto

scipy.spatial.distance.rogerstanimoto(u, v, w=None)

8.6 russellrao

8.7 sokalmichener

scipy.spatial.distance.sokalmichener(u, v, w=None)

8.8 sokalsneath

scipy.spatial.distance.sokalsneath(u, v, w=None)

8.9 yule

scipy.spatial.distance.yule(u, v, w=None)

http://www.wooajung.com/news/26617.html

相关文章:

  • 无锡知名网站推广网站优化排名金苹果系统
  • 姜堰哪里有网站建设的上海关键词seo
  • 大连建设学院网站福清市百度seo
  • 网站模版与模板的使用哪里可以免费推广广告
  • 郑州二手房seo优化一般多少钱
  • 网站建设与web前端区别湖南正规关键词优化
  • 一个网站怎么做软件好用成人电脑基础培训班
  • 网站免费视频怎么做网站优化排名
  • 如何采集网站文章私人浏览器
  • 网站3网合一是怎么做的怎么做一个自己的网站
  • 邢台人才网官网首页昆明seo工资
  • 宁波网站建设费用中国大数据平台官网
  • 做设计网站的工作怎么样潮州seo建站
  • 做网站法律条文徐州seo排名收费
  • 在常州 做兼职上什么网站查询网址域名
  • 2018年做网站赚钱吗网络营销有哪些功能
  • wordpress顶踩东莞百度搜索优化
  • 网站建设兆金手指科杰seo外链发布平台有哪些
  • 青海省网站建设哪家公司比较靠谱互联网营销外包推广
  • 百度做一个网站怎么做呢sem和seo有什么区别
  • 山西网站建设如何去做网络推广
  • 网站开发人员 生活湖南seo技术培训
  • 在线客服系统腾讯廊坊百度关键词优化
  • 西宁做网站公司排名最近的头条新闻
  • 富阳网站建设营销型企业网站诊断
  • 体现网站特色网站建设步骤
  • 家教网站建设百度搜索风云榜单
  • 网站图片上传不上去是什么情况搜索引擎谷歌入口
  • 绛县网站建设客户引流推广方案
  • 最专业网站建设公司百度一下首页