当前位置: 首页 > news >正文

广告公司简介100字seo推广价格

广告公司简介100字,seo推广价格,靠谱的网站开发,建行国际互联网网站文章目录 1.层次聚类法原理简介2.层次聚类法基础算法演示2.1.Single-linkage的计算方法演示2.2.Complete-linkage的计算方法演示2.3.Group-average的计算方法演示 3.层次聚类法拓展算法介绍3.1.质心法原理介绍3.2.基于中点的质心法3.3.Ward方法 4.层次聚类法应用实战4.1.层次聚…

文章目录

    • 1.层次聚类法原理简介
    • 2.层次聚类法基础算法演示
      • 2.1.Single-linkage的计算方法演示
      • 2.2.Complete-linkage的计算方法演示
      • 2.3.Group-average的计算方法演示
    • 3.层次聚类法拓展算法介绍
      • 3.1.质心法原理介绍
      • 3.2.基于中点的质心法
      • 3.3.Ward方法
    • 4.层次聚类法应用实战
      • 4.1.层次聚类法聚类应用
      • 4.2.层次聚类法聚类树绘制
        • 4.2.1.Single-linkage连接方法
        • 4.2.2.Complete-linkage连接方法
        • 4.2.3.Group-average连接方法
        • 4.2.4.Centroid连接方法
        • 4.2.5.Ward连接方法
    • 5.致谢

1.层次聚类法原理简介

#聚合聚类(层次聚类方法)
"""
1.层次聚类顾名思义就是按照某个层次对样本集进行聚类操作,这里层次并非是真实的层次,实际上指的就是某种距离定义,(我们其实已经学过了很多的距离定义了)
2.层次聚类方法的目标就是采用自下而上的方法去去消除类别的数量,类似与树状图的由叶子结点向根结点靠拢的过程。
3.更简单的说,层次聚类是将初始化的多个类簇看做树节点,每一次迭代都会两两距离相近的类簇进行合并,如此反复,直至最终只剩一个类簇(也就是根结点)。
"""

2.层次聚类法基础算法演示

层次聚类法的三种不同方法:
依据对相似度(距离)的不同定义,将层次聚类法的聚类方法分为三种:
1.Single-linkage:要比较的距离为元素对之间的最小距离。
2.Complete-linkage:要比较的距离为元素对之间的最大距离。
3.Group average:要比较的距离为类之间的平均距离。
我们首先拿出几个数据进行计算演示一番这最基础的算法,如图所示,这是ABCDE五个点的相互之间的距离:
在这里插入图片描述

2.1.Single-linkage的计算方法演示

Single-linkage:要比较的距离为元素对之间的最小距离。所以我们需要找到每个点对应的最小距离。
第一步:A的最小距离是B,所以AB先合并,记作{AB}。
在这里插入图片描述
第二步:以AB为整体进行对C合并的研究。在这里插入图片描述
最后发现CD最短,合并记作{CD}。
第三步:以{AB}/{CD}为整体进行对E合并的研究。
在这里插入图片描述
最后发现CD->E最短,合并记作{CDE}。
第四步:合并最后的两个簇即可,即{AB}{CDE}合并。

2.2.Complete-linkage的计算方法演示

2.Complete-linkage:要比较的距离为元素对之间的最大距离。所以我们需要找到每个点对应的最大距离。
第一步:A与各个元素之间的最大距离的最小距离是B,所以AB先合并,记作{AB}。
aad5384fbf5f056a6.png)
第二步:
C与各元素的最大距离的最小值如下所示:
在这里插入图片描述
所以C的各元素的最大距离的最小值是D,合并CD并且记作{CD}。
第三步:以{AB}/{CD}为整体进行对E合并的研究。
在这里插入图片描述
最后发现CD->E最短,合并记作{CDE}。
第四步:合并最后的两个簇即可,即{AB}{CDE}合并。

2.3.Group-average的计算方法演示

Group-average要比较的距离为元素对之间的最平均距离。所以我们需要找到每个点对应的最平均距离。
第一步:A与各个元素之间的最大距离的最小距离是B,所以AB先合并,记作{AB}。
aad5384fbf5f056a6.png)
第二步:
C与各元素的平均距离的最小值如下所示:
在这里插入图片描述
所以C的各元素的最平均距离的最小值是D,合并CD并且记作{CD}。
第三步:以{AB}/{CD}为整体进行对E合并的研究。
在这里插入图片描述
最后发现CD->E的平均距离最短,合并记作{CDE}。
第四步:合并最后的两个簇即可,即{AB}{CDE}合并。

3.层次聚类法拓展算法介绍

来源:https://blog.csdn.net/huangguohui_123/article/details/106995538

3.1.质心法原理介绍

在这里插入图片描述
如果两个族群合并之后,下一步合并时的最小距离反而减小(质心在不断变化),我们则称这种情况为倒置(Reversal/Inversion),在系统树图中表现为交叉(Crossover)现象。

在一些层次聚类方法中,如简单连接、完全连接和平均连接,倒置不可能发生,这些距离的度量是单调的(monotonic)。显然质心方法并不是单调的。

3.2.基于中点的质心法

在这里插入图片描述

3.3.Ward方法

在这里插入图片描述

4.层次聚类法应用实战

4.1.层次聚类法聚类应用

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.cluster import AgglomerativeClustering
from scipy.cluster.hierarchy import dendrogram, linkage
#%%
# 读取数据
data = pd.read_excel('Clustering_5.xlsx')
# 提取特征和标签
X = data.iloc[:, :2].values
y = data['y'].values
# 创建凝聚聚类模型
n_clusters = 5
agg_clustering = AgglomerativeClustering(n_clusters=n_clusters)
# 进行聚类
labels = agg_clustering.fit_predict(X)
#%%
# 绘制聚类结果
plt.figure(figsize=(10, 6))
for i in range(n_clusters):cluster_points = X[labels == i]plt.scatter(cluster_points[:, 0], cluster_points[:, 1], label=f'Cluster {i + 1}',s=16)plt.title('Agglomerative clustering')
plt.legend()
plt.show()

聚类效果比较不错
在这里插入图片描述

4.2.层次聚类法聚类树绘制

4.2.1.Single-linkage连接方法
#%%
linked = linkage(X, 'single')  # 使用ward方法计算链接
dendrogram(linked, orientation='top', distance_sort='descending', show_leaf_counts=True)
plt.title('Single-linkage连接方法')
plt.show()

在这里插入图片描述

4.2.2.Complete-linkage连接方法
#%%
linked = linkage(X, 'complete')  # 使用ward方法计算链接
dendrogram(linked, orientation='top', distance_sort='descending', show_leaf_counts=True)
plt.title('Complete-linkage连接方法')
plt.show()

在这里插入图片描述

4.2.3.Group-average连接方法
#%%
linked = linkage(X, 'average')  # 使用ward方法计算链接
dendrogram(linked, orientation='top', distance_sort='descending', show_leaf_counts=True)
plt.title('Group-average连接方法')
plt.show()

在这里插入图片描述

4.2.4.Centroid连接方法
#%%
linked = linkage(X, 'centroid')  # 使用ward方法计算链接
dendrogram(linked, orientation='top', distance_sort='descending', show_leaf_counts=True)
plt.title('Centroid连接方法')
plt.show()

在这里插入图片描述

4.2.5.Ward连接方法
# 绘制树状图(聚类树)
linked = linkage(X, 'ward')  # 使用ward方法计算链接
dendrogram(linked, orientation='top', distance_sort='descending', show_leaf_counts=True)
plt.title('Ward连接方法')
plt.show()

在这里插入图片描述

5.致谢

本章内容的完成离不开以下大佬文章的启发和帮助,在这里列出名单,如果对于内容还有不懂的,可以移步对应的文章进行进一步的理解分析。
1.层次聚类法的基础算法演示https://blog.csdn.net/qq_40206371/article/details/123057888
2.层次聚类法的进阶算法演示https://blog.csdn.net/huangguohui_123/article/details/106995538
在文章的最后再次表达由衷的感谢!!
http://www.wooajung.com/news/27766.html

相关文章:

  • 哪一个网站有做实验的过程网站查询网
  • 什么网站可以发布有偿做项目西安网
  • 佛山网站制作哪个好薇成都网络营销
  • 无锡网站怎么做广州seo实战培训
  • 网站建设与应用教案市场营销网络
  • 一个域名一个主机可以做两个网站吗上海野猪seo
  • 兼职 做网站长沙seo关键词
  • 信融科技做网站推广可靠吗一键优化大师
  • 国外免费服务器申请seo运营培训
  • 重庆企业服务建站网站开发佛山网站建设技术托管
  • wordpress网站被劫持重定向seo快速排名是什么
  • 做网站优化需要多少钱网站优化外包价格
  • 网站建设 销售提成阿里云万网域名查询
  • 东莞网站优化方案海南百度推广公司有哪些
  • 深圳 网站设计营销推广公司
  • 网站制作 需要什么网络技术百度搜索风云榜排行榜
  • 网站建站行业公司主页建设天津百度推广网络科技公司
  • 做纸巾定制的网站新闻早知道
  • 网站建设技术手段南京百度网站快速优化
  • 网站建设与管理课程心得体会中文网站排名
  • flash做网站通栏每日新闻快报
  • 昆明网站做定制网站开发
  • 拍卖网站制作微信公众号营销
  • 网站扫描怎么做百度搜索引擎的网址是多少
  • 沈阳商城网站建设seo教学网站
  • 源码网站大淘客cms外包
  • 新开传奇网站首区长沙推广公司
  • 福步外贸论坛app上海有实力的seo推广咨询
  • 男女做姿抽插视频网站sem是什么设备
  • 网站登录页面模板成功营销十大经典案例