当前位置: 首页 > news >正文

直接用源码做网站盗版吗seo网络推广报价

直接用源码做网站盗版吗,seo网络推广报价,旅游网站开发文档,吉林住房和城乡建设厅网站时序预测 | MATLAB实现基于TSO-XGBoost金枪鱼算法优化XGBoost的时间序列预测(多指标评价) 目录 时序预测 | MATLAB实现基于TSO-XGBoost金枪鱼算法优化XGBoost的时间序列预测(多指标评价)预测效果基本介绍程序设计参考资料 预测效果 基本介绍 Matlab实现基于TSO-XGBoost金枪鱼算…

时序预测 | MATLAB实现基于TSO-XGBoost金枪鱼算法优化XGBoost的时间序列预测(多指标评价)

目录

    • 时序预测 | MATLAB实现基于TSO-XGBoost金枪鱼算法优化XGBoost的时间序列预测(多指标评价)
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本介绍

Matlab实现基于TSO-XGBoost金枪鱼算法优化XGBoost的时间序列预测
TSO-XGBoost,金枪鱼算法优化,XGBoost,时间序列预测。
1.data为数据集,单变量时间序列数据集,优化参数(最大迭代次数,深度,学习率),
2.MainTSO_XGboostTS.m为主程序文件,其他为函数文件,无需运行。
3.命令窗口输出R2、MAE、MAE和RMSEP等评价指标,可在下载区获取数据和程序内容。
注意程序和数据放在一个文件夹,文件夹不可以XGBoost命名,因为有函数已经用过,运行环境为Matlab2018及以上。

  • xgboost是属于boosting家族,在目标函数中使用了二阶泰勒展开并加入了正则,在决策树的生成过程中采用了精确贪心的思路,寻找最佳分裂点的时候,使用了预排序算法,对所有特征都按照特征的数值进行预排序,然后遍历所有特征上的所有分裂点位,计算按照这些候选分裂点位分裂后的全部样本的目标函数增益,找到最大的那个增益对应的特征和候选分裂点位,从而进行分裂。
  • 这样一层一层的完成建树过程, xgboost训练的时候,是通过加法的方式进行训练,也就是每一次通过聚焦残差训练一棵树出来,最后的预测结果是所有树的加和表示。

程序设计

  • 完整源码和数据下载地址:MATLAB实现基于TSO-XGBoost金枪鱼算法优化XGBoost的时间序列预测(多指标评价)
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  优化算法
[Best_pos, Best_score, curve, avcurve] = TSO(pop, Max_iteration, lb, ub, dim, fun);%%  获取最优参数
num_trees = Best_pos(1, 1);         % 迭代次数
%params.max_depth = Best_pos(1, 2);  % 树的深度
params.max_depth = 18;  % 树的深度
params.eta = Best_pos(1, 3);        % 学习率%%  建立模型
model = xgboost_train(p_train, t_train, params, num_trees);%%  预测
t_sim1 = xgboost_test(p_train, model);
t_sim2 = xgboost_test(p_test , model);%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1', ps_output);
T_sim2 = mapminmax('reverse', t_sim2', ps_output);%% V. 评价指标
%%  均方根误差 RMSE
error1 = sqrt(sum((T_sim1 - T_train).^2)./M);
error2 = sqrt(sum((T_test - T_sim2).^2)./N);%% 决定系数
R1 = rsquare(T_train,T_sim1);
R2 = rsquare(T_test,T_sim2);MAE1 = mean(abs(T_train - T_sim1));
MAE2 = mean(abs(T_test - T_sim2));
%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1)./T_train));
MAPE2 = mean(abs((T_test - T_sim2)./T_test));
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  适应度曲线
figure
plot(1 : length(curve), curve, 'LineWidth', 1.5);
title('TSO适应度变化曲线', 'FontSize', 13);
xlabel('迭代次数', 'FontSize', 10);
ylabel('适应度值', 'FontSize', 10);
grid onaa=0.7;
z=0.05;
while Iter<Max_iterC=Iter/Max_iter;a1=aa+(1-aa)*C;a2=(1-aa)-(1-aa)*C;for i=1:size(T,1)Flag4ub=T(i,:)>ub;Flag4lb=T(i,:)<lb;T(i,:)=(T(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;fitness(i)=fobj(T(i,:));if fitness(i)<Best_scoreBest_score=fitness(i);  Best_pos=T(i,:);endendC_old=T;  fit_old=fitness;%-------------------------------------------------t=(1-Iter/Max_iter)^(Iter/Max_iter);if rand<zT(1,:)= (ub-lb)*rand+lb;elseif  0.5<randr1=rand;Beta=exp(r1*exp(3*cos(pi*((Max_iter-Iter+1)/Max_iter))))*(cos(2*pi*r1));if  C>randT(1,:)=a1.*(Best_pos+Beta*abs(Best_pos-T(1,:)))+a2.*T(1,:); %Equation (8.3)elseIndivRand=rand(1,dim).*(ub-lb)+lb;T(1,:)=a1.*(IndivRand+Beta*abs(IndivRand-T(1,:)=Best_pos+rand(1,dim).*(Best_pos-T(1,:))+TF.*t^2.*(Best_pos-T(1,:));%Equation (9.1)elseT(1,:) =TF.* t^2.*T(1,:);%Equation (9.2)endendendfor i=2:popif rand<zT(i,:)= (ub-lb)*rand+lb;elseif  0.5<randr1=rand;T(i,:)=a1.*(Best_pos+Beta*abs(Best_pos-T(i,:)))+a2.*T(i-1,:);%Equation (8.4)elseIndivRand=rand(1,dim).*(ub-lb)+lb;T(i,:)=a1.*(IndivRand+Beta*abs(IndivRand-T(i,:)))+a2.*T(i-1,:);%Equation (8.2)endelseTF = (rand>0.5)*2-1;if 0.5>randT(i,:)=Best_pos+rand(1,dim).*(Best_pos-T(i,:))+TF*t^2.*(Best_pos-T(i,:)); %Equation (9.1)elseT(i,:) = TF*t^2.*T(i,:);%Equation (9.2)endendendendIter=Iter+1;curve(Iter)=Best_score;%curve(Iter) = GBestF;avcurve(Iter) = sum(curve) / length(curve);disp(['第' num2str(Iter) '次迭代适应度值:' num2str(Best_score)])
end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/124693040?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/124864369?spm=1001.2014.3001.5502

http://www.wooajung.com/news/28398.html

相关文章:

  • 网站通知模板百度百度百度一下
  • 野花视频直播免费观看7找索引擎seo
  • 可以做cps合作的棋牌网站6苏州优化排名seo
  • 招聘seo网站推广网络营销技巧
  • 做的网站是怎么被收录专业网站建设公司
  • 网站建设做得好营销策划公司名称
  • 做气球装饰可以上哪些网站手机端网站排名
  • 广东快速做网站公司百度关键词分析
  • 如何优化网站图片行业关键词查询
  • 公司企业网站维护惠州seo整站优化
  • 新手学网站建设解疑与技巧1200例搜索引擎优化教材答案
  • 网站开发遇到过哪些技术难点寰宇seo
  • c做网站教程站长之家点击进入
  • 给网站做脚本算违法吗百度一下一下你就知道
  • 谷歌网站的设计原则台州seo排名优化
  • wordpress插件升级seo是什么软件
  • 中国国防建设网站怎么推广引流客户
  • 如何做网站教程营销策划36计
  • 网站制作代码大全百度智能小程序怎么优化排名
  • 网站更换域名网络优化网站
  • 球赛投注网站开发模板建站流程
  • 外贸网站制作时间及费用宁波seo怎么做推广渠道
  • 给卖假性药的做网站一般要判多久浙江疫情最新情况
  • 沈阳专业搬钢琴公司兰州网站seo优化
  • 北京住房城乡建设网站今日热点新闻事件摘抄50字
  • 镇江微网站建设业务网站制作
  • 平板网站建设品牌推广方式都有哪些
  • 中国企业网官方网站查询建站abc
  • 做美国代购的都从哪个网站买百度推广开户价格
  • 网站建设和程序开发哪个好怎么投放广告