当前位置: 首页 > news >正文

政府门户网站建设经验全国31省市疫情最新消息今天

政府门户网站建设经验,全国31省市疫情最新消息今天,网站怎样秒收录,微信营销网站(含html源文件)免费下载在训练之前先要按照一定目录格式准备数据: VOC标签格式转yolo格式并划分训练集和测试集_爱钓鱼的歪猴的博客-CSDN博客 目录 1、修改数据配置文件 2、修改模型配置文件 3、训练 1、修改数据配置文件 coco.yaml 拷贝data/scripts/coco.yaml文件, pa…

在训练之前先要按照一定目录格式准备数据:

VOC标签格式转yolo格式并划分训练集和测试集_爱钓鱼的歪猴的博客-CSDN博客


 

目录

1、修改数据配置文件

 2、修改模型配置文件

 3、训练


1、修改数据配置文件

coco.yaml

拷贝data/scripts/coco.yaml文件,

path 修改为VOCdevkit文件夹所在目录

train:修改为yolov5_train.txt

val: 修改为yolov5_val.txt

names也进行修改,保存为my-anther.yaml

具体如下:

 这样模仿VOC数据集的目录结构,与yolov5项目里的代码所匹配

 2、修改模型配置文件

把项目models/yolov5n.yaml文件拷贝一份,只修改类别数量(num of classes)就成,保存为my-yolov5n.yaml

 3、训练

在项目目录下开启终端

运行:

 python train.py  --data my-anther.yaml --epochs 1 --weights yolov5n.pt --cfg my-yolov5n.yaml --batch-size 24

如果有GPU ,命令后面添加 --device 0。这里没有GPU,所以只跑一个 epoch。

batch可选择调为16、24、40、64、128....。先选一个小的,保证能跑起来,然后慢慢加大,如果内存不足报错,就返回上一个batch大小。

输出信息:

(yolo) jason@honor:~/PycharmProjects/pytorch_learn/yolo/yolov5-7.0$ python train.py  --data my-anther.yaml --epochs 1 --weights yolov5n.pt --cfg my-yolov5n.yaml --batch-size 24
train: weights=yolov5n.pt, cfg=my-yolov5n.yaml, data=my-anther.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=1, batch_size=24, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=None, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest
github: skipping check (not a git repository), for updates see https://github.com/ultralytics/yolov5
YOLOv5 🚀 2022-11-22 Python-3.8.13 torch-2.0.0+cu117 CPUhyperparameters: lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0
ClearML: run 'pip install clearml' to automatically track, visualize and remotely train YOLOv5 🚀 in ClearML
Comet: run 'pip install comet_ml' to automatically track and visualize YOLOv5 🚀 runs in Comet
TensorBoard: Start with 'tensorboard --logdir runs/train', view at http://localhost:6006/from  n    params  module                                  arguments                     0                -1  1      1760  models.common.Conv                      [3, 16, 6, 2, 2]              1                -1  1      4672  models.common.Conv                      [16, 32, 3, 2]                2                -1  1      4800  models.common.C3                        [32, 32, 1]                   3                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]                4                -1  2     29184  models.common.C3                        [64, 64, 2]                   5                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               6                -1  3    156928  models.common.C3                        [128, 128, 3]                 7                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]              8                -1  1    296448  models.common.C3                        [256, 256, 1]                 9                -1  1    164608  models.common.SPPF                      [256, 256, 5]                 10                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]              11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          12           [-1, 6]  1         0  models.common.Concat                    [1]                           13                -1  1     90880  models.common.C3                        [256, 128, 1, False]          14                -1  1      8320  models.common.Conv                      [128, 64, 1, 1]               15                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          16           [-1, 4]  1         0  models.common.Concat                    [1]                           17                -1  1     22912  models.common.C3                        [128, 64, 1, False]           18                -1  1     36992  models.common.Conv                      [64, 64, 3, 2]                19          [-1, 14]  1         0  models.common.Concat                    [1]                           20                -1  1     74496  models.common.C3                        [128, 128, 1, False]          21                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]              22          [-1, 10]  1         0  models.common.Concat                    [1]                           23                -1  1    296448  models.common.C3                        [256, 256, 1, False]          24      [17, 20, 23]  1      9471  models.yolo.Detect                      [2, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [64, 128, 256]]
my-YOLOv5n summary: 214 layers, 1766623 parameters, 1766623 gradients, 4.2 GFLOPsTransferred 342/349 items from yolov5n.pt
optimizer: SGD(lr=0.01) with parameter groups 57 weight(decay=0.0), 60 weight(decay=0.0005625000000000001), 60 bias
train: Scanning /home/jason/work/my-datasets/yolov5_train.cache... 2276 images, 0 backgrounds, 0 corrupt: 100%|██████████| 2276/2276 00:00
val: Scanning /home/jason/work/my-datasets/yolov5_val.cache... 568 images, 0 backgrounds, 0 corrupt: 100%|██████████| 568/568 00:00AutoAnchor: 6.38 anchors/target, 1.000 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅
Plotting labels to runs/train/exp2/labels.jpg... 
Image sizes 640 train, 640 val
Using 8 dataloader workers
Logging results to runs/train/exp2
Starting training for 1 epochs...Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size0/0         0G    0.09858     0.3112    0.01833       1331        640: 100%|██████████| 95/95 10:55Class     Images  Instances          P          R      mAP50   mAP50-95:   0%|          | 0/12 00:00WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:   8%|▊         | 1/12 00:08WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  17%|█▋        | 2/12 00:15WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  25%|██▌       | 3/12 00:23WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  33%|███▎      | 4/12 00:30WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  42%|████▏     | 5/12 00:38WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  50%|█████     | 6/12 00:47WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  58%|█████▊    | 7/12 00:54WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  67%|██████▋   | 8/12 01:00WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  75%|███████▌  | 9/12 01:07WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  83%|████████▎ | 10/12 01:14WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  92%|█████████▏| 11/12 01:21WARNING ⚠️ NMS time limit 2.500s exceededClass     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 12/12 01:28all        568      28591      0.613      0.262      0.108     0.03511 epochs completed in 0.207 hours.
Optimizer stripped from runs/train/exp2/weights/last.pt, 3.8MB
Optimizer stripped from runs/train/exp2/weights/best.pt, 3.8MBValidating runs/train/exp2/weights/best.pt...
Fusing layers... 
my-YOLOv5n summary: 157 layers, 1761871 parameters, 0 gradients, 4.1 GFLOPsClass     Images  Instances          P          R      mAP50   mAP50-95:   0%|          | 0/12 00:00WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:   8%|▊         | 1/12 00:08WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  17%|█▋        | 2/12 00:44WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  25%|██▌       | 3/12 01:07WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  33%|███▎      | 4/12 01:33WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  42%|████▏     | 5/12 01:42WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  50%|█████     | 6/12 01:49WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  58%|█████▊    | 7/12 01:57WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  67%|██████▋   | 8/12 02:04WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  75%|███████▌  | 9/12 02:10WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  83%|████████▎ | 10/12 02:18WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  92%|█████████▏| 11/12 02:24WARNING ⚠️ NMS time limit 2.500s exceededClass     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 12/12 02:30all        568      28591       0.61      0.228     0.0949     0.0317open        568       2512          1          0    0.00273    0.00136close        568      26079      0.219      0.456      0.187      0.062
Results saved to runs/train/exp2

http://www.wooajung.com/news/32289.html

相关文章:

  • 武汉网站制作开发深圳外贸网络推广渠道
  • 做网站品牌盐城seo网站优化软件
  • 广州专业做网站的科技公司设计网站的公司
  • 黄冈网站设计推广哪家好seo关键词排名网络公司
  • 做网站好赚钱北京口碑最好的it培训机构
  • dns是不是做网站用的百度网络营销中心官网
  • 软件开发阶段包括哪几个阶段长沙seo培训
  • 咖啡网站模板html大型的营销型网站
  • 如何做网站泛目录解析每日一则新闻摘抄
  • 网站建设 首选百川互动无锡百度seo优化
  • 建设工程竣工竣工档案网站新型营销方式
  • 聊城网站建设哪个好些宁德市
  • 河南做网站公司青岛网站seo公司
  • 自己做的网站怎么在百度能搜到郴州网站建设
  • 网站的打开速度百度推广优化是什么意思
  • 做网站必须有框架么如何自制网站
  • 多网站后台问题站长工具的网址
  • 网站建设毕业设计开题ppt有做网站的吗
  • wordpress 电影moban厦门seo推广外包
  • 网站建设开发实训的目的seo网站推广软件
  • 安阳网站建设服务网址查询域名解析
  • 淘宝客是怎么做代理网站的软件开发app制作
  • 品牌网页aso优化榜单
  • 贵阳政府网站建设招聘站长工具seo客户端
  • 求个网站直接能看的秒收录关键词代发
  • 公司网站怎么做才能有官网二字指数基金排名前十名
  • cms仿站搜索引擎优化简称
  • 用模板做企业网站seo整站优化解决方案
  • dreamweaver如何设计网站末班自动点击器下载
  • 黄埔做网站的公司自己怎么搭建网站