当前位置: 首页 > news >正文

长沙专业的网站建设企业南昌seo教程

长沙专业的网站建设企业,南昌seo教程,学校网站 网站建设,html5 css3单页手机网站模板KNN算法 一 KNN算法介绍二 KNN算法API2.1 KNeighborsClassifier 分类算法2.2 KNeighborsRegressor 回归算法 三 两个经典案例3.1 鸢尾花案例3.2 手写数字识别案例 一 KNN算法介绍 K-近邻算法(K Nearest Neighbor,简称KNN).比如根据你的“邻居…

KNN算法

    • 一 KNN算法介绍
    • 二 KNN算法API
      • 2.1 KNeighborsClassifier 分类算法
      • 2.2 KNeighborsRegressor 回归算法
    • 三 两个经典案例
      • 3.1 鸢尾花案例
      • 3.2 手写数字识别案例

一 KNN算法介绍

K-近邻算法(K Nearest Neighbor,简称KNN).比如根据你的“邻居”来推断出你的类别.

KNN算法思想:如果一个样本在特征空间中的 k 个最相似的样本中的大多数属于某一个类别,则该样本也属于这个类别 .

KNN算法的应用方式:

  • 分类问题处理:

    1.计算未知样本到每一个训练样本的距离

    2.将训练样本根据距离大小升序排列

    3.取出距离最近的 K 个训练样本

    4.进行多数表决,统计 K 个样本中哪个类别的样本个数最多

    5.将未知的样本归属到出现次数最多的类别

  • 回归问题处理:

    1.计算未知样本到每一个训练样本的距离

    2.将训练样本根据距离大小升序排列

    3.取出距离最近的 K 个训练样本

    4.把这个 K 个样本的目标值计算其平均值

    5.平均值作为未知的样本预测值

二 KNN算法API

# 导包 
from sklearn.neighbors import KNeighborsClassifier,KNeighborsRegressor # 分类算法,回归算法

2.1 KNeighborsClassifier 分类算法

英文翻译:KNeighborsClassifier # 分类算法  estimator # 估量值 估计器例句:estimator = KNeighborsClassifier(n_neighbors=3)  API解释:KNeighborsClassifier() # 创建分类算法对象n_neighbors=n          # 参数 k 的值 即几个样本(邻居)应用场景:标签不连续通过分类思想解决.

2.2 KNeighborsRegressor 回归算法

英文翻译:KNeighborsRegressor # 回归算法  estimator # 估量值 估计器例句:estimator = KNeighborsRegressor(n_neighbors=4)API解释:KNeighborsRegressor()  # 创建回归算法对象n_neighbors=n          # 参数 k 的值 即几个样本(邻居)应用场景:标签连续通过回归思想解决.

三 两个经典案例

3.1 鸢尾花案例

本案例通过提取鸢尾花的特征,通过数据集训练模型使其可以分辨不同种类的鸢尾花.在Anaconda2024版本中已经集成了鸢尾花的数据集.方便大家直接使用.

1

2

# 0. 导包
from sklearn.datasets import load_iris  # 加载鸢尾花数据集
import seaborn as sns                   # Seaborn绘图
import matplotlib.pyplot as plt         # matplotlib
import pandas as pd                     # pandas
from sklearn.model_selection import train_test_split  # 切割训练集和测试集
from sklearn.preprocessing import StandardScaler      # 数据标准化处理
from sklearn.neighbors import KNeighborsClassifier    # KNN算法 分类对象
from sklearn.metrics import accuracy_score            # 模型评估# 1.定义函数 用于加载鸢尾花数据集 并简单查看数据集各部分
def dm01_load_iris():# 1.1加载数据集iris_data = load_iris()# 1.2 打印数据集# print(iris_data)# 1.3 #打印所有的键 即属性名# dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names', 'filename', 'data_module'])# print(iris_data.keys())# 1.4 查看数据集字段特征print(iris_data.data[:5])# 1.5 查看数据集的标签字段print(iris_data.target[:5])# 1.6 查看数据集的标签名# ['setosa' 'versicolor' 'virginica']print(iris_data.target_names)# 1.7 查看数据集的特征名# ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']print(iris_data.feature_names)# 1.8 查看数据集描述信息# print(iris_data.DESCR)# 1.9 查看数据集文件名# print(iris_data.filename)# 1.10 查看数据集 数据模型# print(iris_data.data_module)# 2.定义函数 用于通过 Seaborn散点图的方式 对鸢尾花数据集进行可视化
def dm02_show_iris():# 1.加载鸢尾花数据集iris_data = load_iris()# 2.封装成DF 对象 作为可视化展示的数据源iris_df = pd.DataFrame(iris_data.data,columns=iris_data.feature_names)# 3.给DF 对象新增1列 表示:标签iris_df['label'] = iris_data.targetprint(iris_df)# 4.可视化 散点图# x: x轴值, 这里是: 花瓣的长度,  y: y轴值, 这里是: 花瓣的宽度,  hue: 颜色(根据鸢尾花的标签来分组, 不同分组颜色不同), fit_reg=False, 不绘制拟合回归线.sns.lmplot(data=iris_df,x='petal length (cm)',y='petal width (cm)',hue='label',fit_reg=False)# 设置标题plt.title('iris data')# 绘图plt.show()if __name__ == '__main__':# dm01_load_iris()dm02_show_iris()

3

# 3.定义函数实现划分训练集和测试集
def dm03_train_test_split():# 1.加载数据集iris_data = load_iris()# 2. 划分训练集和测试集# iris_data.data => 特征, 一共150条# iris_target => 标签, 一共150条# test_size => 测试集占比, 0.2 => 训练集 : 测试集 => 8 : 2# random_state => 随机种子, 如果种子一样, 则每次划分的数据集都是一样的.# 细节: 返回值的时候, 注意下四个参数的顺序, 即: 训练集特征, 测试集特征, 训练集标签, 测试集标签.x_train,x_test,y_train,y_test = train_test_split(iris_data.data,iris_data.target,test_size=0.2,random_state=66)# 3.打印划分后的结果print(f'训练集,x-特征:{len(x_train)}')print(f'测试集,x-特征:{len(x_test)}')print(f'训练集,y-标签:{len(y_train)}')print(f'测试集,y-标签:{len(y_test)}')# 4.定义函数 实现模型预测和评估
def dm04_predict():# 1.加载数据iris_data = load_iris()# 2.数据预处理 因数据量小且Anaconda2024提前处理过 这里只划分训练集与测试即可x_train, x_test, y_train, y_test = train_test_split(iris_data.data, iris_data.target, test_size=0.2,random_state=66)# 3.特征工程# 3.1 特征提取:查看训练集的 特征, 因为特征是已经提取好的, 所以无需我们手动提取了, 即, 特征为: 花萼的长度, 花萼的宽度, 花瓣长度, 花瓣的宽度.# print(x_train)# 3.2 特征预处理# 创建标准化对象transfer = StandardScaler()# 标准化训练集的特征x_train = transfer.fit_transform(x_train)# 查看结果# print(x_train)# 标准化测试集的特征x_test = transfer.transform(x_test)# 4.模型训练(机器学习)# 4.1 创建估计器对象estimator = KNeighborsClassifier(n_neighbors=5)# 4.2 模型训练estimator.fit(x_train,y_train)  # 传入 训练集的特征和标签# 5.模型预测# 场景1# 对测试集预测 得到预测后的测试集标签y_predict = estimator.predict(x_test)print(f'测试集预测结果为{y_predict}') # [1 0 0 0 1 1 0 2 0 0 1 1 2 2 0 2 1 1 0 2 2 1 2 1 0 1 0 0 1 2]# 场景2 对新数据集做预测# step1:定义新的数据集my_data = [[2.1, 3.5, 5.6, 3.2]]# step2:对新数据集标准化处理my_data = transfer.transform(my_data)# step3:对新数据集做结果分类预测,打印预测结果my_predict = estimator.predict(my_data)print(f'新数据集预测结果为{my_predict}')  # 新数据集预测结果为[1]# step4:对新数据集做概率预测,看看在各个标签中的概率my_predict_proba = estimator.predict_proba(my_data)print(f'新数据集在各标签概率预测为{my_predict_proba}') # [[0.  0.6 0.4]] 即 占 0 1 2的概率# 6. 模型评估 KNN(K近邻算法), 评估指标主要是: 预测的准确率.# 方式1 直接评估 获取准确率print(f'直接评估准确率为{estimator.score(x_test,y_test)}')  # 传入测试集特征和标签 # 0.9# 方式2 用真实值和预测值评估得到准确率print(f'真实值和预测值对比评估结果为{accuracy_score(y_test,y_predict)}')  # 传入测试集标签和预测值标签 # 0.9if __name__ == '__main__':# dm03_train_test_split()dm04_predict()

3.2 手写数字识别案例

MNIST_data

# 背景相关
MNIST手写数字识别 
1999年发布,成为分类算法基准测试的基础
MNIST仍然是研究人员和学习者的可靠资源# 需求
从数万个手写图像的数据集中正确识别数字.
(超级经典的案例,数据集网络资源丰富,本文只手撕代码.)
# 导包
import matplotlib.pyplot as plt                         # matplotlib绘图
import pandas as pd                                     # pandas
from sklearn.model_selection import train_test_split    # 分割训练集和测试集
from sklearn.neighbors import KNeighborsClassifier      # KNN 分类算法
import joblib                                           # 加载或保存模型
from collections import Counter                         # 分组计数# 1. 定义函数用于查看数字图片
def show_digit(idx):"""定义函数用于查看数字图片:param idx: 行索引:return: 无"""# 1.读取数据 获取df对象data = pd.read_csv('data/手写数字识别.csv')# 细节: 非法值校验if idx < 0 or idx > len(data)-1:return# 2. 获取数据: 特征+标签x = data.iloc[:,1:]  # 所有行,第二列到最后y = data.iloc[:,0]   # 所有行,第一列# 3. 查看数据集print(f'x的维度{x.shape}')         # (42000, 784)print(f'y的各分类数量{Counter(y)}') #Counter({1: 4684, 7: 4401, 3: 4351, 9: 4188, 2: 4177, 6: 4137, 0: 4132, 4: 4072, 8: 4063, 5: 3795})# 4.获取具体的某张图片 某一行数据等于一条样本数据# step1 把一条样本数据转成(28,28)的二维数组 即模拟28*28像素的图片digit = x.iloc[idx].values.reshape(28,28)# step2 显示图片plt.imshow(digit,cmap='gray')  # cmap='gray'  灰色显示 即 灰度图# step3 取消坐标显示plt.axis('off')# step4 绘图plt.show()  # 8# 在main函数中测试
if __name__ == '__main__':# 显示数字图片show_digit(10)

8

# 2.训练模型
def train_model():# 1.读取数据 获取df对象data = pd.read_csv('data/手写数字识别.csv')# 2.获取数据 特征+标签x = data.iloc[:,1:]y = data.iloc[:,0]# 3.特征预处理# step1 X轴(像素点)的归一化处理x = x / 255# step2 划分训练集和测试集# stratify=y 按照y的类别比例进行分割x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,stratify=y,random_state=66)# 4.训练模型estimator = KNeighborsClassifier(n_neighbors=3)estimator.fit(x_train,y_train)# 5.模型评估 评测正确率my_score = estimator.score(x_test,y_test)print(f'模型评估的正确率为{my_score}')   # 0.9657142857142857# 6.保存模型joblib.dump(estimator,'model/knn.pth')# 3. 测试模型
def use_model():# 1.加载图片img = plt.imread('data/demo.png')  # 28 * 28像素plt.imshow(img,cmap='gray') # 灰度图plt.show() # 2

shuzi_2

	# 2.加载模型estimator = joblib.load('model/knn.pth')# 3.预测图片img = img.reshape(1,-1)  # 1行 所有列 等同于 (1, 784)y_test = estimator.predict(img)print(f'预测的数字是{y_test}')  # [2]# 在main函数中测试
if __name__ == '__main__':# 训练模型# train_model()  # 0.9657142857142857# 测试模型use_model()

以上就是要和大分享的KNN算法相关内容,机器学习算法还有很多,后面我还会持续分享其他训练模型的算法.我们下期见!

http://www.wooajung.com/news/32666.html

相关文章:

  • 济南做html5网站建设什么网站可以免费推广
  • wordpress父主题和子主题宁波seo推广公司排名
  • 做原型网站crm系统网站
  • 网站建设 行业资讯免费平台推广
  • 东莞建网站公司哪个好企业品牌营销推广
  • 西宁人大网站建设营销渠道模式有哪些
  • 网站搜索怎么做php谷歌搜索引擎香港入口
  • 在什么网站上可以做中学数学家教百度权重怎么提高
  • 南京建站公司哪家好郑州今天刚刚发生的新闻
  • 北京开发区建设委员会网站制作网站
  • 2017淘宝客网站怎么做莆田网站建设优化
  • 学校要建个网站应该怎么做程序员培训班要多少钱
  • 个人视频网站怎么做百度广告收费表
  • 做搜狐网站页面百度推广的广告真实可信吗
  • 做网站开发的公司销售关键词挖掘站长工具
  • 网站搭建服务器需要什么国际新闻最新消息美国
  • 公司网站页面加密海外推广代理商
  • 江苏企业建网站排名优化上海seo公司排名
  • 微信支付网站未建设完善百度首页快速排名系统
  • asp在线生成网站地图源代码免费建站系统哪个好用吗
  • 响应式网站和自适应网站区别百度识图搜索引擎
  • BC网站开发公司java培训学费多少钱
  • 网络促销北京seo推广
  • 动易网站 青春营销软件商城
  • 菜鸟必读 网站被入侵后需做的检测 2郑州网络推广效果
  • 彩票网站开发制作h5永久免费低代码开发平台
  • 国外网站做家具哪个好长沙百度推广开户
  • 企业微信网页版登录宁波seo排名方案优化公司
  • 做公司网站需要备案吗武汉seo认可搜点网络
  • 徐州品牌网站建设汕头网站推广排名